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Outline

* Overview of climate change and projections for prairies
* Ramifications of climate change for prairie pothole wetlands

* Potential for prairie pothole wetlands to help adapt to, and mitigate
against climate change

e Conclusions / Recommendations
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Even with rapid
emissions reductions
droughts will
Increase in the
Canadian Prairies
and will become

potentially
catastrophic if we
do nothing

Climate Moisture Index (CMI)

under different climate scenarios and timeframes
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Pralrle Pothole Region

Encompasses approx. 777,000 km?

50° | Prairie Pothole Region °

e Contains between 5 — 8 millions wetlands (potholes)

e Spans a moisture gradient (300-900mm) and temperature
gradient, with a very dynamic climate (drought-deluge, -40
°C—-40°C)

* Region is vital to North America’s waterfowl populations
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* Increasingly recognized
for the ecosystem
services offered by its

numerous wetlands

e
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Figure 1. Extent of Prairie Pothole Region in North America.
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Why prairie wetlands are special

* Prairie wetlands are mostly non-floodplain wetlands / geographically isolated

* Lack bidirectional hydrologic connections with adjacent streams and or rivers
 Often embedded in uplands and without well defined surface inlets or outlets

 These wetland are often situated in working agricultural landscapes, where
landuse change and drainage impact wetland function

* Are particularly vulnerable to climate change because unlike completely
terrestrial ecosystems, prairie potholes cannot migrate with a changing climate
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Prairie Wetland
Hydroperiods

e Length of time wetland is inundated

* Regulated by the balance between
precipitation and evapotranspiration

e Controls wetland productivity and the types
of biota that can be supported

* Determines suitability for species (100 days
required for many waterfowl, amphibian, and
aquatic invertebrates)
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Fig. 6 Comparison of wetland stage-duration curves from WLS for
historic climate and a 4 °C climate change scenario for the Academy,
South Dakota, weather station. [source: Fig. 10 in Johnson et al. (2010).
Prairie wetland complexes as landscape functional units in a changing
climate. BioScience 60:128-140]
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Impacts to Wetland Hydroperiod

In the Canadian Prairies climate change is
expected to increase temperature and
evapotranspiration while only minimally
increasing annual precipitation.

The balance between P and ET is expected to
result in larger water deficits for prairie wetlands

Water depth (stage) and duration of a given water
depth is predicted to decline significantly across
all wetland classes but specifically in semi-
permanent and seasonal wetlands
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Figure 4. Frequency of hydroperiod calculated for a seasonal
prairie pothole wetland. Vertical line shows frequency of a 100-

day hydroperiod.
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Impacts to Wetland Hydroperiod

* Inseasonal wetlands a hydroperiod of
100 days occurred in 22 out of 100
years. This is reduced by 68% for a
climate that is 2°C warmer and by 95%
for a climate that is 4°C warmer

* This has serious implications for
species that require longer
hydroperiods and may result in
ecological trap effects



Temperature +3°C
Precipitation +20%

Temperature +3°C

Temperature +3°C
l_:recipitation -20%
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Simulated occurrence of highly favorable water
and cover conditions for waterfowl breeding
across the prairie pothole region under historic (a)
and alternative (b, ¢, and d) future climatic
conditions.

Changes in availability/suitability of habitat may
potentially reduce waterfowl populations to 30-
70% below historical averages.

These changes do not incorporate potential land
use changes (grass to crop) that will accompany
climate change and resulting impacts to wetlands
(increased drainage, reduced quality of remaining
wetlands.




Status and Trends:
Prairie Wetlands

> A significant amount of the wetlands in developed areas of
Canada have been lost (>90% in some regions)

> We have lost approximately 665,000 ha of wetlands in prairie
Canada and southern ON over the last 60 years:

» southern AB (133,000)
» southern SK (250,000)
» south western MB (105,000)
» southern ON (177,000)
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Summary of climate change
Impacts on prairie wetlands

Climate change will increase temperature, reduce
water availability, reduce hydroperiods and alter the
cover cycle.

* Result of past pressures applied to wetland
landscapes such as the PPR will likely amplify the
effects of climate change in these regions

* Thereis concern that in combination these could
result in an ecological threshold/tipping point. These
are often rapid/irreversible state shift
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The role of prairie wetlands in climate
change mitigation and adaptation
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The role of prairie wetlands in climate
change mitigation and adaptation

From a global perspective, wetlands store approx. 30% of
terrestrial carbon but only occupy 5-8% of the landscape
(mostly peatlands)

Wetllgnds are among the most productive ecosystems in the
Wor

Of the many types of wetlands, inland freshwater marshes have
’g}e Bi h§st rates of net primary productivity (250-3,000 g
m2/yr
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The role of prairie wetlands in climate
change mitigation and adaptation

 Wetlands are important global carbon stores but also important
sources of GHGs

Neubauer (2014): no natural wetlands older than ~250 years
can be considered net sources of radiative forcing (pre-industrial
baseline conditions.

\ ) !
= . | l o :'] | 1Ii ‘ b
3~ - _-,_i ;:* i i A '|- : ‘.I { :
B 5 ot E@ﬂh!ﬁ‘;lﬂ

N - - SR S - J
N— ; 1T . ] g [ | - ; ¥l A B o
ks N - T LT A TS O e N O dhk SR T E i
Wi . 1* SR T = | I TRy R o _-.:I'u'_!".-a'u-‘ L TR (1 ¥ el . I il 1 ! 0
L B e B b e %.E o, Lk | | | AT :
s -.‘t'r . ALY g T Nn-Rr pELH il = L] | 1 A AL i
(AT SR 1 1 ) | ’ i ' 5 0 I 24 i | R1NEL
R FLRE LA g P, S0 14 SE i o I . [ ] L o = v i
(L Ll | ] w150 S w T i i i 2 e &t AR e\ ]
" ;:--'! s = CELA1Y ] ¥ L Y L i 0 &

i
Conserving
Canada’s
. Wetlands

b . &,
SN g _,' I .;I
TS A LI ;L
- if’?-ﬂiﬁﬂﬂéh“i' ?




Largest source of wetland
methane is from tropical
regions

Temperate wetland methane
emissions are driven by the
vast extent of boreal
peatlands contained within
this zone, but freshwater
mineral soil wetlands like
marshes can have large fluxes
on a per unit basis
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Figure 2. Mean wetland CH,4 emission zonal profiles: full ensem-
ble mean (FE: red line) and corresponding range (pink area); ex-
tended ensemble mean (EE; black line) and corresponding range
(grey area); GEOS-Chem emissions inventory (GC; dashed blue
line); Bloom et al. (2012) emissions (BL: dashed orange line).
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DUC and partners
monitored over 60
wetlands across the
Canadian PPR (references
sites and restored
wetlands of various ages)

Measured SOC, and GHG
emissions (CO2, CH4, and
N20) across landscape
transects from upland
contributing areas to
wetland centers
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Carbon Study Sites

Canadian Prairie Pothole Region




RESULTS

Carbon stores were highest in intact wetlands and
increased with restoration age and were significantly
higher in wetlands relative to uplands

Even after accounting for methane emissions,
restoration predicted to sequester 3.25 tonnes of
CO,/ha/yr

Wetland drainage results in a loss of 89 tonnes of
SOC/ha

Research is referenced in the 2013 Supplement to
the 2006 IPCC Guidelines for National Greenhouse Reference

Gas Inventories: Wetlands
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SCIENCE ADVANCES | RESEARCH ARTICLE

APPLIED ECOLOGY

Natural climate solutions for Canada

Wetlands

Avoided peatland conversion
Avoided FWM wetland conversion
Salt marsh restoration
FWM watland restoration
Peatland restoration
Seagrass restoration
Avoided seagrass loss
Wetlands total

Grasslands
Avoided grassland conversion
Riparian grassland restoration

Grasslands total
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Modified from Drever et al., (2021)
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Survey (summer 2013) of | .
wetlands embedded in £ 20
cropland vs pasture/grassland £
S 15
« 31 wetlands were sampled, cropland (n=17), % o
pasture/grassland (n=14) S 5.
o
« Mean [P] in cropland wetlands (0.98 mg L") 2
were more than 3x those in grass/pasture § 0.5 -
wetlands (0.28 mg L) ﬂc_é
« Median [P] in cropland wetlands (0.78 mg L") = 001 °
were more than 40x higher than those in

grass/pasture wetlands (0.02 mg L") l I
Cropland Pasture/Grassland

Wetland Landscape

Weﬂanrfs




Allied attack: climate change and eutrophication (Moss et al., 2011)
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Fig. 2. Current indications of feedback effects of eutrophication on climate change. Blue arrows indicate carbon sequestration routes; red
arrows indicate carbon emission routes; black arrows indicate other climate effects. Because CO, uptake and release may both mcrease with
o ﬂdu o cutrophication, net CO, balance 1s unclear. The increase in methane and nitrous oxide is more probable. Dashed arrow indicates that changes in
Wetlands precipitation regimes may either lead to more or less organic carbon loading, depending on local and regional circumstances.



Cumulative CH,-C emissions (kg ha'1)

Fig. 5. Relationship between mean Chl-a concentrations and total basin cu-
mulative CH, flux across all basin types with upper and lower 95% confidence
limits.

Effects of cyanobacterial blooms on GHG fluxes
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Fig. 6. DIN:DP ratios and total basin cumulative CH, flux across all basin types
in relation to the Redfield Ratio of 16:1 which is show here as the red dashed
line.
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just carbon!

More than

Wetlands and climate change
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0 - 1000 W.nv
The dissipation of solar energy. A flux

comparison of heat flows over a drained DAILY '"PUTBC:‘;?.‘:";‘*R ENERGY

wheat field and a wetland.

Note the differences in solar energy £ ':":g_v,\..om,.,...mo..
transformation into sensible heat, reaching oo

up to 60% to70% over a drained crop field
compared to only 5% t0o10% over an intact
wetland. In wetland landscapes, 70% to 80% HEAT FLUX
of heat is dissipated via evapotranspiration '.
(Pokorny et al., 2010).

DRAINED FIELD . LAKE, MEADOW, FOREST,
LANDSCAPE SATURATED WITH WATER
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Sensitivity of a GCM Simulation to Inclusion of Inland Water Surfaces
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Impact of lakes and wetlands on boreal
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The importance of accounting for
cooling/humidifying effect of wetlands is well
documented in the literature

Models generally find that wetlands:
Increase regional evapotranspiration
Increase regional latent heat flux
Decrease sensible heat flux
Produce summer cooling (July) of 2-3°C

Potential to alter regional precipitation patterns
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Key take aways:

> Wetlands are very productive systems and globally significant carbon
stores - including freshwater mineral soil wetlands

» Conversion of wetlands releases significant amounts of carbon to the
atmosphere

> Restored wetlands can sequester significant amounts of carbon from
the atmosphere

> Wetlands can help mitigate climate change via other mechanisms such
as influencing surface energy budgets and other ecosystem co-benefits
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Questions?
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